Ijaz, M. et al. Integration and applications of fog computing and cloud computing based on the internet of things for provision of healthcare services at home. Electronics. 10 (9), 1077 (2021).
Ijaz, M. et al. Intelligent fog-enabled smart healthcare system for wearable physiological parameter detection. Electronics. 9 (12), 2015 (2020).
Visca, D. et al. Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. Pulmonology. 27 (2), 151–165 (2021).
Google Scholar
Sun, J. et al. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol. Med.26 (5), 483–495 (2020).
Google Scholar
Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol.19 (3), 141–154 (2021).
Google Scholar
Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395 (10223), 507–513 (2020).
Google Scholar
Chung, M. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 295 (1), 202–207 (2020).
Google Scholar
Arora, R. The training and practice of radiology in India: current trends. Quant. Imaging Med. Surg.4 (6), 449 (2014).
Google Scholar
Ai, T. et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 296 (2), E32–E40 (2020).
Google Scholar
Sullivan, S. G. et al. Where has all the influenza gone? The impact of COVID-19 on the circulation of influenza and other respiratory viruses, Australia, March to September 2020. Eurosurveillance. 25 (47), 2001847 (2020).
Google Scholar
AboElenein, N. M., Piao, S., Noor, A. & Ahmed, P. N. MIRAU-Net: an improved neural network based on U-Net for gliomas segmentation. Sig. Process. Image Commun.101, 116553 (2022).
Balasundaram, A. et al. Internet of things (IoT)-based smart healthcare system for efficient diagnostics of health parameters of patients in emergency care. IEEE Internet Things J.10 (21), 18563–18570 (2023).
Dhar, T., Dey, N., Borra, S. & Sherratt, R. S. Challenges of deep learning in medical image analysis—improving explainability and trust. IEEE Trans. Technol. Soc.4 (1), 68–75 (2023).
Elaziz, M. A., Dahou, A., Mabrouk, A., Ibrahim, R. A. & Aseeri, A. O. Medical image classifications for 6G IoT-enabled smart health systems. Diagnostics. 13 (5), 834 (2023).
Google Scholar
Yu, H., Zhang, Q. & Yang, L. T. An edge-cloud-aided private high-order fuzzy C-means clustering algorithm in smart healthcare. IEEE/ACM Trans. Comput. Biol. Bioinf.21 (4), 1083–1092 (2023).
Ayoub, S. et al. Hyperparameter Tuned Deep Learning Model for Healthcare Monitoring System in Big Data. In 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), pp. 281–287 (IEEE, 2023).
Nyachoti, D. O., Fwelo, P., Springer, A. E. & Kelder, S. H. Association between Gross National Income per capita and COVID-19 vaccination coverage: a global ecological study. BMC Public. Health. 23 (1), 2415 (2023).
Google Scholar
Santosh, K. C. AI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal data. J. Med. Syst.44 (5), 93 (2020).
Google Scholar
Santosh, K. C. COVID-19 prediction models and unexploited data. J. Med. Syst.44 (9), 170 (2020).
Google Scholar
Santosh, K. C. & Joshi, A. (eds) COVID-19: Prediction, decision-making, and its Impacts (Springer, 2021).
Aradhya, V. M., Mahmud, M., Guru, D. S., Agarwal, B. & Kaiser, M. S. One-shot cluster-based approach for the detection of COVID–19 from chest X–ray images. Cogn. Comput.13 (4), 873–881 (2021).
Das, D., Santosh, K. C. & Pal, U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med.43 (3), 915–925 (2020).
Google Scholar
Mukherjee, H. et al. Deep neural network to detect COVID-19: one architecture for both CT scans and chest X-rays. Appl. Intell.51, 2777–2789 (2021).
Mukherjee, H. et al. Shallow convolutional neural network for COVID-19 outbreak screening using chest X-rays. Cogn. Comput., 1–14 (2021).
Narin, A., Kaya, C. & Pamuk, Z. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl.24, 1207–1220 (2021).
Google Scholar
Duran-Lopez, L., Dominguez-Morales, J. P., Corral-Jaime, J., Vicente-Diaz, S. & Linares-Barranco, A. COVID-XNet: a custom deep learning system to diagnose and locate COVID-19 in chest X-ray images. Appl. Sci.10 (16), 5683 (2020).
Google Scholar
Das, N. N., Kumar, N., Kaur, M., Kumar, V. & Singh, D. Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. Irbm. 43 (2), 114–119 (2022).
Toğaçar, M., Ergen, B. & Cömert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med.121, 103805 (2020).
Google Scholar
Minaee, S., Kafieh, R., Sonka, M., Yazdani, S. & Soufi, G. J. Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image. Anal.65, 101794 (2020).
Google Scholar
Bassi, P. R. & Attux, R. A deep convolutional neural network for COVID-19 detection using chest X-rays. Res. Biomedical Eng., 1–10 (2021).
Ozturk, T. et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med.121, 103792 (2020).
Google Scholar
Hussain, E. et al. CoroDet: a deep learning-based classification for COVID-19 detection using chest X-ray images. Chaos Solitons Fractals. 142, 110495 (2021).
Google Scholar
Santosh, K. C. & Ghosh, S. Covid-19 imaging tools: how big data is big? J. Med. Syst.45 (7), 71 (2021).
Google Scholar
Ghadi, Y. Y. et al. Integration of federated learning with IoT for smart cities applications, challenges, and solutions. PeerJ Comput. Sci.9, e1657 (2023).
Google Scholar
Ghadi, Y. Y. et al. Enhancing patient healthcare with mobile edge computing and 5G: challenges and solutions for secure online health tools. J. Cloud Comput.13 (1), 93 (2024).
Vajda, S. et al. Feature selection for automatic tuberculosis screening in frontal chest radiographs. J. Med. Syst.42, 1–11 (2018).
Munadi, K., Muchtar, K., Maulina, N. & Pradhan, B. Image enhancement for tuberculosis detection using deep learning. IEEE Access.8, 217897–217907 (2020).
Ayaz, M., Shaukat, F. & Raja, G. Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Phys. Eng. Sci. Med.44 (1), 183–194 (2021).
Google Scholar
Khan, F. A. et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit. Health. 2 (11), e573–e581 (2020).
Google Scholar
Rahman, T. et al. Reliable Tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access.8, 191586–191601 (2020).
Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 284 (2), 574–582 (2017).
Google Scholar
Haq, I. et al. Machine vision approach for diagnosing tuberculosis (TB) based on computerized tomography (CT) scan images. Symmetry. 14 (10), 1997 (2022).
Hammoudi, K. et al. Deep learning on chest X-ray images to detect and evaluate pneumonia cases at the era of COVID-19. J. Med. Syst.45 (7), 75 (2021).
Google Scholar
Al-Waisy, A. COVID-DeepNet: Hybrid multimodal deep learning system for improving COVID-19 pneumonia detection in chest X-ray images. Computers, Materials and Continua 67, 2409–2429 (2021). (2021).
Tripathy, S. S. et al. An SDN-enabled fog computing framework for wban applications in the healthcare sector. Internet Things. 26, 101150 (2024).
Hashmi, M. F., Katiyar, S., Keskar, A. G., Bokde, N. D. & Geem, Z. W. Efficient pneumonia detection in chest xray images using deep transfer learning. Diagnostics. 10 (6), 417 (2020).
Google Scholar
Ibrahim, A. U., Ozsoz, M., Serte, S., Al-Turjman, F. & Yakoi, P. S. Pneumonia classification using deep learning from chest X-ray images during COVID-19. Cogn. Comput.16 (4), 1589–1601 (2024).
158, 111588 (2024).
Ullah, H., Zhao, Y., Wu, L., Noor, A. & Zhao, L. Multi-modal Medical Image Fusion Technique to Improve Glioma Classification Accuracy. In 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), pp. 321–325IEEE, (2021).
Tandel, G. S. et al. Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance imaging sequence data. Diagnostics. 13 (3), 481 (2023).
Google Scholar
Alzubi, J. A., Alzubi, O. A., Singh, A. & Ramachandran, M. Cloud-IIoT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning. IEEE Trans. Industr. Inf.19 (1), 1080–1087 (2022).
11, 46283–46296 (2023).
Alzubi, O. A. et al. An optimal pruning algorithm of classifier ensembles: dynamic programming approach. Neural Comput. Appl.32, 16091–16107 (2020).
Movassagh, A. A. et al. Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J. Ambient Intell. Humaniz. Comput., 1–9 (2023).
Kala, R. et al. A. A Deep Neural Network for Image Classification Using Mixed Analog and Digital Infrastructure. In International Conference on Emergent Converging Technologies and Biomedical Systems, pp. 657–665 (2023).
Li, Z. et al. Integrated CNN and federated learning for COVID-19 detection on chest X-ray images. IEEE/ACM Trans. Comput. Biol. Bioinf.21 (4), 835–845 (2022).
Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A. & Zomaya, A. Y. Federated learning for COVID-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet Things J.9 (12), 10257–10271 (2021).
Enad, H. G. & Mohammed, M. A. Cloud computing-based framework for heart disease classification using quantum machine learning approach. J. Intell. Syst.33 (1), 20230261 (2024).
Giacomello, E., Cataldo, M., Loiacono, D. & Lanzi, P. L. Distributed learning approaches for automated chest x-ray diagnosis. arXiv Preprint arXiv :211001474 (2021).
Li, Z. et al. Split Learning for Distributed Collaborative Training of Deep Learning Models in Health Informatics. In AMIA Annual Symposium Proceedings 2023, p. 1047 (2023).
Chamikara, M. A. P., Bertok, P., Khalil, I., Liu, D. & Camtepe, S. Privacy preserving distributed machine learning with federated learning. Comput. Commun.171, 112–125 (2021).
Rapp, M., Khalili, R. & Henkel, J. Distributed learning on heterogeneous resource-constrained devices. arXiv preprint arXiv:2006.05403 (2020).
Apostolopoulos, I. D. & Mpesiana, T. A. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med.43, 635–640 (2020).
Google Scholar
Shelke, A. et al. Chest X-ray classification using deep learning for automated COVID-19 screening. SN Comput. Sci.2 (4), 300 (2021).
Google Scholar
Woźniak, M., Siłka, J. & Wieczorek, M. Deep neural network correlation learning mechanism for CT brain tumor detection. Neural Comput. Appl.35 (20), 14611–14626 (2023).
Obeidavi, M. R. & Maghooli, K. Tumor detection in brain MRI using residual convolutional neural networks. In 2022 International conference on machine vision and image processing (MVIP), pp. 1–5IEEE, (2022).
Anantharajan, S., Gunasekaran, S., Subramanian, T. & Venkatesh, R. MRI brain tumor detection using deep learning and machine learning approaches. Measurement: Sens.31, 101026 (2024).
Hao, R., Namdar, K., Liu, L. & Khalvati, F. A transfer learning–based active learning framework for brain tumor classification. Front. Artif. Intell.4, 635766 (2021).
Google Scholar
Rahman, T. & Islam, M. S. MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sens.26, 100694 (2023).
Yamashita, R., Nishio, M., Do, R. K. G. & Togashi, K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging. 9, 611–629 (2018).
Google Scholar
Noor, A. et al. Y. Automated sheep facial expression classification using deep transfer learning. Comput. Electron. Agric.175, 105528 (2020).
Horry, M. J. et al. COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access.8, 149808–149824 (2020).
Google Scholar
76, 102313 (2022).
Mahesh, A., Banerjee, D., Saha, A., Prusty, M. R. & Balasundaram, A. CE-EEN-B0: contour extraction based extended EfficientNet-B0 for Brain Tumor classification using MRI images. Computers Mater. Continua. 74 (3), 5967–5982 (2023).
Chaudhary, Y. et al. Efficient-CovidNet: deep learning based COVID-19 detection from chest x-ray images. In 2020 IEEE international conference on e-health networking, application & services (HEALTHCOM), pp. 1–6IEEE, (2021).
Majib, M. S., Rahman, M. M., Sazzad, T. S., Khan, N. I. & Dey, S. K. Vgg-scnet: a vgg net-based deep learning framework for brain tumor detection on mri images. IEEE Access.9, 116942–116952 (2021).
Zhu, H. et al. Medical image classification via ensemble bio-inspired evolutionary DenseNets. Knowl. Based Syst.280, 111035 (2023).
Ramaneswaran, S., Srinivasan, K., Vincent, P. D. R. & Chang, C. Y. Hybrid inception v3 XGBoost model for acute lymphoblastic leukemia classification. Comput. Math. Methods Med.2021 (1), 2577375 (2021).
Mehmood, A. et al. SBXception: a shallower and broader xception architecture for efficient classification of skin lesions. Cancers. 15 (14), 3604 (2023).
Google Scholar
Marikkar, U., Atito, S., Awais, M., Mahdi, A. & LT-ViT: A Vision Transformer for multi-label Chest X-ray classification. In 2023 IEEE International Conference on Image Processing (ICIP), pp. 2565–2569IEEE, (2023).
9(6), 261 (2022).
Cetinkaya, A. E., Akin, M. & Sagiroglu, S. A communication efficient federated learning approach to multi chest diseases classification. In 2021 6th International Conference on Computer Science and Engineering (UBMK), pp. 429–434IEEE, (2021).
Díaz, J. S. P. & García, Á. L. Study of the performance and scalability of federated learning for medical imaging with intermittent clients. Neurocomputing. 518, 142–154 (2023).
Cetinkaya, A. E., Akin, M. & Sagiroglu, S. Improving performance of federated learning based medical image analysis in non-iid settings using image augmentation. In 2021 International Conference on Information Security and Cryptology (ISCTURKEY), pp. 69–74IEEE, (2021).
Islam, M., Reza, M. T., Kaosar, M. & Parvez, M. Z. Effectiveness of federated learning and CNN ensemble architectures for identifying brain tumors using MRI images. Neural Process. Lett.55 (4), 3779–3809 (2023).
Feki, I., Ammar, S., Kessentini, Y. & Muhammad, K. Federated learning for COVID-19 screening from chest X-ray images. Appl. Soft Comput.106, 107330 (2021).
Google Scholar
Liu, B., Yan, B., Zhou, Y., Yang, Y. & Zhang, Y. Experiments of federated learning for covid-19 chest x-ray images. arXiv Preprint (2020). arXiv:2007.05592.